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Characterization of Young Red Wines by Application of HJ Biplot 
Analysis to Anthocyanin Profiles 
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The anthocyanin contents of 48 young red wines with Certified Brands of Origin (CBO) “Ribera de 
Duero” and “Toro” were studied by using an HPLC method. The anthocyanin profiles were subjected 
to HJ biplot analysis to determine whether it would be possible to differentiate between the wines of 
different CBO. Anthocyanins in the form of acetates and the nonacylated anthocyanins/acylated 
anthocyanins ratio were the parameters with the best relative contribution to discrimination between 
the two CBO. A logistic model for estimating the probability of a sample belonging to a given CBO 
is proposed. According to the model, for cutoff point 0.65,94.5970 of the Ribera de Duero wines were 
well classified as were 81.82% of the Tor0 wines. 

INTRODUCTION 

Wines elaborated in specific areas and recognized as 
having Certified Brands of Origin (CBO) are of significant 
importance in the different wine-producing regions. The 
quality of the wines made is recognized and guaranteed. 
Accordingly, a series of specific parameters that will allow 
analysts to classify the different wines within their cor- 
responding CBO is necessary. Among the parameters that 
can be used is the composition in certain metals, organic 
acids, certain polyphenolic compounds, etc. The values 
reached in these depend on a series of factors, among which 
are the varieties of grapes employed and the processes of 
elaboration and aging. 

In the case of wines, and generally also of other food 
products, it is becoming increasingly important to have 
available methods for characterization, to prevent fraud- 
ulency and gain a better knowledge of their characteristics. 
The anthocyanin composition due to the nature of the 
grapes can be used as a criterion for their characterization 
(Roggero et al., 1986, 1988); this is also true of the total 
content in anthocyanins. These features later affect the 
characteristics displayed by the wines themselves such 
that it is reasonable to assume that anthocyanins can be 
used to characterize the wines. 

The color of young red wines is mainly due to the an- 
thocyanins extracted from the skins of the fruit duripg 
the maceration process. With time, the anthocyanins 
gradually disappear and the color becomes more and more 
due to polymeric pigments resulting from the condensation 
of the anthocyanins both among each other and with other 
components such as flavans. The vinification technique 
is of particular importance in the anthocyanin composition 
of wines; thus, wines from similar varieties of grapes may 
exhibit significant differences in their anthocyanin con- 
tents according to the technique used for their elaboration. 

To classify the different wines within their correspond- 
ing CBO, it is possible to use techniques of statistical 
analysis. The techniques for data representation that show 
the results in the form of spatial plots across the coordinate 
axes are widespread. The analysis by principal compo- 
nents proposed by Hotelling (1933), whose theoretical basis 

t Nutrici6n y Bromat$og!a. 
t Unidad de Bioestadistica. 

002 1-856 1 I 9  111 439-1086$02.50/0 

was proposed by Pearson (1901), enables one to  plot the 
operational taxonomic units (OTUs) with respect to new 
variables, a linear combination of the observable variables 
but with a maximum degree of variance. This technique 
is probably the one most used in the recognition of patterns. 
In this sense, Santamaria e t  al. (1986) applied linear dis- 
criminant analysis to different concentrations of different 
types of phenolic compounds to distinguish between red, 
claret, and rose wines. Another common method involves 
plots and classification by tree diagrams in which the 
abscissa axis represents the unit under study and the Y 
axis represents distances; these plots are known as den- 
dograms. This method has been applied by Vasconcelos 
and Chaves das Neves (1989) to classify wines by pattern 
analysis of free amino acid profiles. Callao et  al. (1987) 
applied a discriminant analysis to 13 volatile compounds 
and 11 conventional enological parameters to characterize 
and differentiate wines from three Catalonian (Spain) 
regions. Mullet et al. (1987), applying an ADE statistical 
treatment and a clustering method to 17 wine samples 
from Majorca to differentiate between the high zone and 
the low zone, found six functions, among them the hue, 
that allowed them to classify all the samples correctly. 

However, plots including the simultaneous analysis of 
OTUs and variables are of additional interest. It is 
extremely important to know the configuration of the 
OTUs and equally so to know which variables are 
responsible for such a configuration. In the present-day 
literature, and above all regarding applied works, almost 
the only technique for simultaneous representation is 
factor analysis of correspondences (FAC) (Benzecri, 1982); 
this kind of analysis is mainly designed for contingency 
tables but can also be applied to any data matrix for which 
it makes sense to work on profiles. Another less well- 
known way, although with important advantages over the 
former type, of representing the rows and columns of any 
matrix together is the HJ  biplot method proposed by 
Galindo-Villard6n (1986); this is an extension of the G W  
and HJT biplot method of Gabriel (1971). 

In the present work three basic objectives were pursued; 
the first was to discover whether the anthocyanin com- 
position can be used to differentiate wines according to 
their CBO. In the event of this being possible, the second 
aim was to study whether all the anthocyanins present in 
the wines are necessary or whether only one would be 
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sufficient for such purposes. Finally, given an individual 
sample, the third aim was to calculate the probability of 
that sample belonging to particular CBO. To do so, the 
variables chosen were used to establish the logistic 
prediction model. In this work, the interest in charac- 
terization is even greater if one takes into account the fact 
that the CBO studied belong to geographical zones close 
to one another and that these are within the same river 
basin (the River Duero); the grapes mainly employed in 
both zones are of the same variety, and hence the wines 
should, in principle, have similar characteristics. 

EXPERIMENTAL PROCEDURES 

Samples. The samples used in this work correspond to young 
red wines from the 1986 and 1987 crops and have the CBO of 
Tor0 (11 samples) and Ribera de Duero (37 samples). All the 
wines were from cellars affiliated with the respective Regulating 
Councils of both CBO. None of the wines were bought from 
stores; rather they were obtained directly from the wine-producing 
cellars themselves, thus ensuring both suitability and represen- 
tativity of the samples analyzed. 

Analysis of Anthocyanins. Anthocyanins were analyzed 
for individual compounds by HPLC (Hebrero et al., 1988). The 
chromatograph employed was a Varian 5000, connected to a 
Hewlett-Packard diode array detector (Model HP-l040M), in 
turn coupled to a HP-79994A data treatment station that 
permitted work both with the chromatograms and with the 
spectra obtained at any time during chromatographic analysis. 
Anthocyanin detection was carried out by joint use of HPLC and 
diode array spectroscopy according to the order of elution and 
the spectral properties of the compounds. To do so, the data 
obtained during analysis were compared with those previously 
collected at our laboratory (Hebrero et al., 1988). 

Quantitative determination of each of the anthocyanins present 
in the wines was achieved from the areas of the chromatographic 
peaks, using a calibration table prepared from standards of mal- 
vidin 3-monoglucoside. The anthocyanin concentration in each 
sample is the mean of three replicates. 

RESULTS AND DISCUSSION 

The relative percent concentrations of the individual 
anthocyanins and anthocyanin fractions of the wines 
studied are shown in Table I. Different ratios among the 
former are presented too. Samples are numbered from 1 
to 48; their origin is identified by RD (Ribera de Duero) 
or T (Toro) and crop year by 86 (1986) or 87 (1987). In 
the statistical analysis as INPUT a 48 X 23 matrix was 
used; this contained the values of the different parameters 
considered for the Ribera de h e r o  and Tor0 samples. 

The markers for the columns in an HJ biplot coincide 
with the projections of the points of the scatter diagram 
Nj on the principal components of the OTU spaces. The 
markers for the rows in the HJ biplot coincide with the 
coordinates of the OTUs when these are referred to new 
variables, which are linear combinations of the original 
variables; these have maximum variance and are uncor- 
related, and each is less important than the preceding one 
from the descriptive point of view. In other words, 
representing the OTUs by an HJ  biplot is equivalent to 
decomposing the overall variability into its principal 
components. Taking into account that the factorization 
chosen for the HJ  biplot corresponds to introducing a 
metric associated with the reciprocal of the matrix of co- 
variances of the variables into the space of the rows, the 
distance between the markers, J, can be said to represent 
the Mahalanobis distance between the OTUs for plotting 
on the plane. 

The markers for the columns of any matrix according 
to an HJ biplot and the markers for the rows can be 
represented on the same reference system (the factorial 
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axis system) whose origin coincides with the equilibrium 
point of the data clouds; this enables one to interpret the 
proximity between the OTUs in terms of the similarity 
among them, and the proximity among variables in terms 
of covariation. As well as being able to compare the relative 
positions of different pairs of points-rows with respect to 
the set of variables and vice versa, it is also possible to 
interpret the distance from one observation to a variable 
in the sense that a variable that is close to an observation 
indicates that that variable has taken a high value in that 
OTU. The farther apart the points representing the 
characters of the center of gravity, the greater the 
variability shown by those characters in the study; the 
smaller the angle formed by two vectors that join the center 
of gravity to the points representing the variables, the 
more correlated the characters. Additionally, the larger 
the model of that vector, the greater the contribution of 
the element to inertia. 

The HJ biplot on the maximum plane of inertia is shown 
in Figure 1. The inertia in the space is above 72%. The 
first eigenvalue is 49.57, the second 41.81, and the third 
28.13, and hence the first and second axes could be 
interpreted as a single factorial plane, although it was 
necessary to interpret the third axis separately. Figure 1 
shows that the first eigenvector essentially discriminates 
the sampling years; however, the most important variables 
regarding the differences in the CBO are characteristic 
variables of axis 3 (see Figure 2). It is evident that axis 
2 separates observation 43 from the others and, thus, this 
axis has no relevant information. For wine 43 the relative 
contribution to axis 2 is very high, probably due to values 
obtained for the acetates of cyanidin 3-monoglucoside and 
peonidin 3-monoglucoside and for delphinidin 3-mono- 
glucoside p-coumarate. 

The greatest contributions relative to the first factorial 
axis were found for the variables shown in Table 11. These 
variables are the most important in the differentiation 
between the years, above all in the case of the Ribera de 
Duero cellars, since for Tor0 the sample was smaller and 
hence the results were less reliable. 

Upon analyzing the same information for axis 3 it is 
possible to discover the most important variables in the 
differentiation between the CBO (Table 111). Multivari- 
ate analysis was then repeated for the above-specified 
samples and only the variables involved in the discrim- 
ination between both CBO. Figure 3 shows the projection 
of the samples onto the subspace of maximum inertia; the 
principal axis now separates the CBO, and the quality of 
representation is in this case much better. For the analysis 
with all the variables it was 78.22 % , and now it is 97.32 7% , 
for both the samples and the variables. Figure 4 shows 
the samples and the variables plotted on the same reference 
system; this allows one to broaden the information in the 
sense that the variables petunidin 3-monoglucoside acetate 
and the anthocyanins in the form of acetates are strongly 
related (the angle that they form with the origin of the 
coordinates is very small); the sum of nonacylated an- 
thocyanins/sum of anthocyanin acetates and malvidin 
3-monoglucoside/malvidin 3-monoglucoside acetate are 
also related, and both these are related to petunidin 
3-monoglucoside p-coumarate. 

According to the criterion mentioned by Roggero et al. 
(19861, acylated anthocyanins vary considerably with 
different climatic conditions, which is quite possible 
between the two geographical zones involved in this study. 
However, the peonidin monoglucoside/malvidin mono- 
glucoside ratio proposed by the above authors as a chem- 
icotaxonomic parameters as an indicator of specific 
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Table 111. Variables for Which the Best Contributions 
Relative to Axis 3 Were Obtained 
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Figure 1. Projection of the samples onto the maximum plane 
of inertia. 

Figure 2. Projection of samples (A) and variables (B) onto planes 
1 and 3. 

Table 11. Variables for Which the Highest Contributions 
Relative to Axis 1 Were Obtained 

variable 
re1 

contrib 
malvidin 3-monoglucoside p-coumarate 
sum % of anthocyanin p-coumarates 
malvidin 3-monoglucoside 
cyanidin 3-monoglucoside 
peonidin 3-monoglucoside p-coumarate 
malvidin 3-monoglucoside/malvidin 3-monoglucoside 

malvidin 3-monoglucoside acetate 
sum % of nonacylated anthocyanins 
sum of nonacylated anthocyanins/sum of anthocyanin 

delphinidin 3-monoglucoside acetate 
peonidin 3-monoglucoside/malvidin 3-monoglucoside 

p-coumarate 

p-coumarates 

910 
800 
770 
660 
660 
660 

510 
510 
460 

450 
180 

enzymatic activity in grapes is not appropriate for the 
characterization of young red wines, in our case perhaps 
because we were dealing with the same variety of grapes. 

In the Ribera de Duero CBO the values of petunidin 

~~ ~ 

re1 

850 
variable contrib 

anthocyanins in form of acetates 
sum of nonacylated anthocyanins/sum 700 

petunidin 3-monoglucoside p-coumarate 500 
of anthocyanin acetates 

monoglucoside acetate 
malvidin 3-monoglucoside/malvidin 3- 370 

petunidin 3-monoglucoside acetate 350 
cyanidin 3-monoglucoside p-coumarate 320 
petunidin 3-monoglucoside 150 

I I 2I 
'I 

I 

.I 
Ism E 

~ 

Ribera de Duero 0 Tor0 

Figure 3. Projection of the samples onto the maximum plane 
of inertia using onlv the variables of maximum relative contri- 
bution shown Yn Table 111. 

1 
Figure 4. Samples and variables plotted on the same reference 
system. 

3-monoglucoside p-coumarate and cyanidin 3-monoglu- 
coside p-coumarate are higher; however, in the Tor0 CBO 
the petunidin 3-monoglucoside acetate and the anthocy- 
anins in the form of acetate are higher. 

The variables chosen in the biplot analysis were used 
to find the parameters of the logistic model that will serve 
to estimate the probability of a sample, for which the 
variables considered take particular values, belonging to 
a given CBO. The coefficients estimated and their cor- 
responding standard errors together with the equation 
that serves as the prediction model are shown in Table IV. 
Given a wine sample, which may be from Ribera de Duero 
or from Toro, it is possible to establish whether it is from 
Ribera de Duero if the probability of its belonging to Tor0 
is less than the probability of its belonging to Ribera de 
Duero. The error rate will always be higher when a 
prediction rule is used prospectively in a new group of 
wines (the test set) than when it is used in the group from 
which it was derived (the training set). There are several 
ways for estimating the misclassification when a prediction 
rule is applied. In our case, among the statistical cross- 
validation techniques, the jackknife method was selected. 
In the jackknife method, one wine is removed and the rule 
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Table IV. Parametere of the Logistic Renreeeion Model. 

Santos et al. 

the Ribera de Duero wines are well classified and 81.82% 
of the Toro wines are also well classified. In general terms 
and with no additional information, this would probably 
be a good cutoff point. Evidently, in view of the logistic 
plot it is possible to choose other cutoff points to be able 
to work with different degrees of reliability for both 
determinations. 
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variable coefficient SE 
4.153 12.789 

XI petunidin 3-monoglucoeide -0.363 0.495 
XZ petunidin 3-monoglucoside acetate -0,622 1.507 
Xs cyanidin 3-monoglucoside p-coumarate 0.426 2.740 
X4 petunidin 3-monoglucoside p-coumarate 2.712 1.389 
Xa anthocyanins in form of acetates -0.384 0.973 
X6 sum of nonacylated/sum acylated 0.112 0.472 

anthocyanins 
X7 malvidin 3-monoglucoside/malvidin 3- 0.002 0.094 

monoglucoside acetate 
a p ( y  1) = 1/1 + e~4.1~.989X,~.622yI+0.4a8X,+Z.7121(,-0.981X,+ 

O ~ l l * X o + O ~ ~ ~ ~ .  P( Y = 0) = 1 - P(Y = 1). Y = 1, if the observation is 
sampled from Ribera de Duero CBO. Y = 0, if the observation is 
sampled from Tor0 CBO. 
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Figure 5. Plot of percentages of correct classification of samples 
according to the different cutoff points on applying the proposed 
logistic prediction model. 

rederived and used to classify the excluded wine. The 
predictive finding is compared with the true state. Thus, 
the misclassification rate is determined by repeating the 
process for all wines. In the estimation of the model we 
assigned a score of 1 to the samples of Ribera de Duero 
and a score of 0 to those from Toro. However, when the 
probability with the model is estimated, such values would 
seldom be obtained; accordingly, one has to estimate the 
value, cutoff point, as from which it can be considered 
that the sample may belong to Ribera de Duero. Figure 
5 shows different cutoff points ranging from 0.05 to 0.95 
and correct success percentages (S = 1, Ribera de Duero) 
and failure percentages (F = 0, Toro), together with the 
total percentages. 

The decision rule is as follows: if the probability 
estimated with the model surpasses the value of the cutoff 
point, the wine is classified as Ribera de Duero; if it is 
lower, the wine is classified as Toro. Taking as the cutoff 
point any value lower than 0.23, all the Ribera de Duero 
samples are classified well. Up to 0.49 only one is poorly 
classified; up to 0.65 two Ribera samples are poorly 
classified as belonging to Toro. That is, more than 94% 
are well classified. For a cutoff point of 0.65,94.59% of 
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